Welcome to the SCOAP³ Forum!

SCOAP³ Forum 07 December 2017

SCOAP³ Forum 2017

07 December 2017

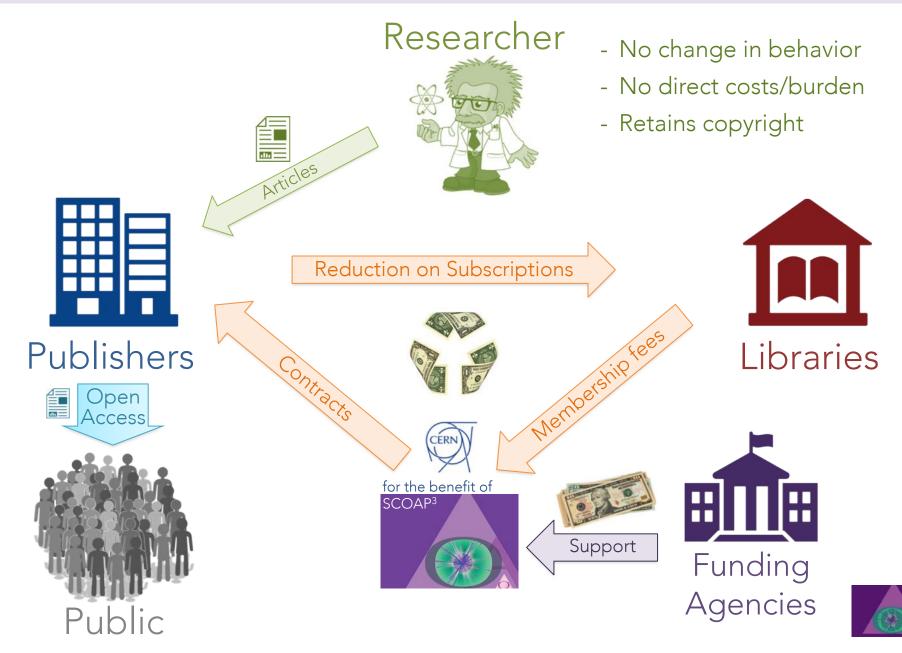
The SCOAP³ Business Model: a reminder

Four years of SCOAP3: a review of the results to date

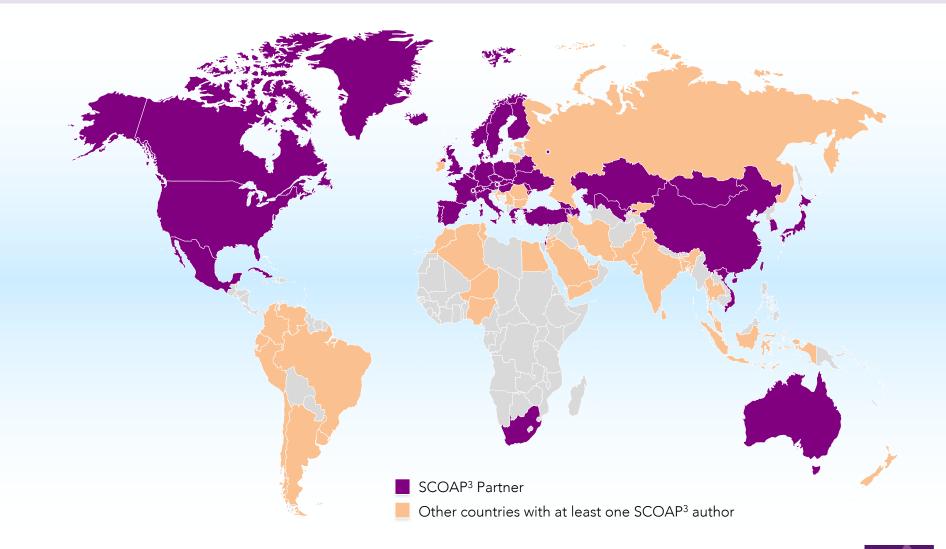
SCOAP³ Impact: an analysis of article downloads

APS to join SCOAP³: an outlook to the years ahead

Questions & Answers

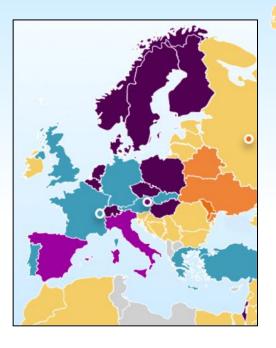


The SCOAP³ Business Model A reminder


SCOAP³ Forum 07 December 2017

A global consortium to convert Particle Physics articles in high-quality journals to Open Access, at no burden for authors, mostly re-using existing funds.

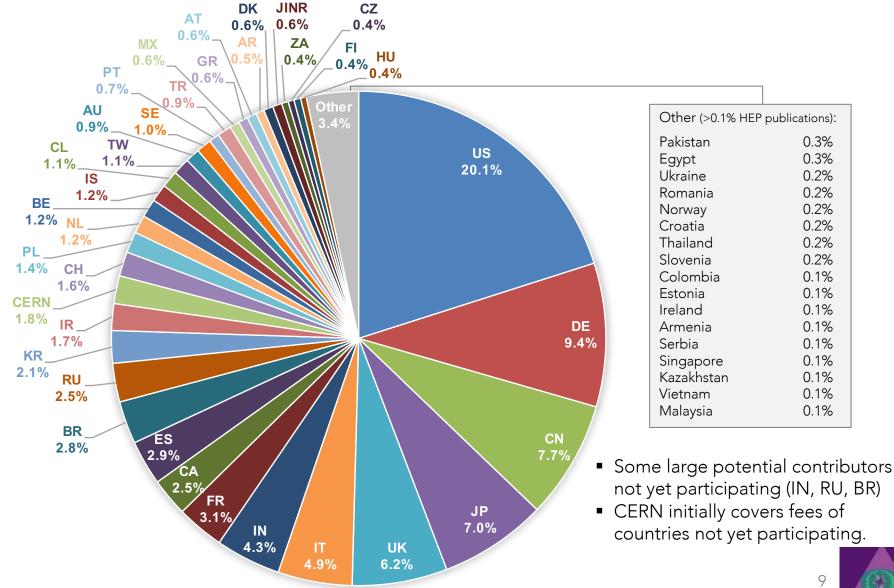
SCOAP³ Model


20'000 authors from over 100 countries published more than 17,500 articles Open Access since Jan 2014

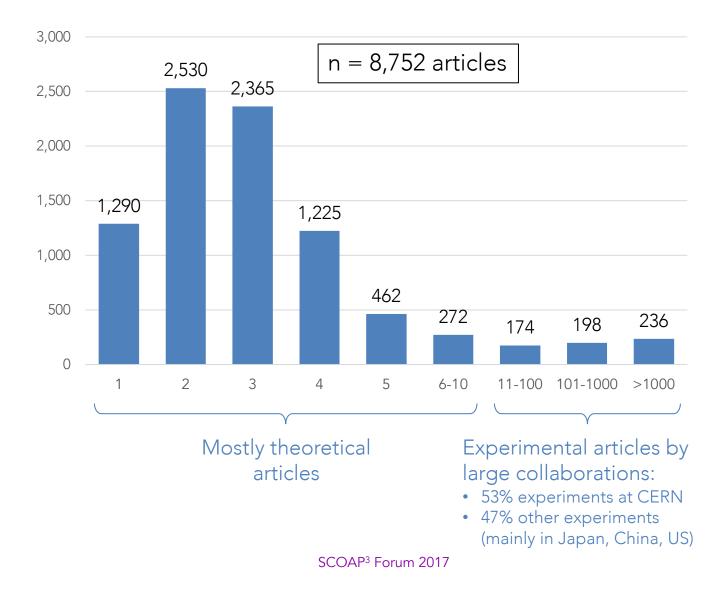
Four years of SCOAP³ A review of the results to date

SCOAP³ Forum 07 December 2017

3,000+ libraries through 52 partners in 43 countries


Participation in SCOAP³ driven by libraries with one national contact point (BE, CA, CH, CZ, DL, FI, HK, HU, IL, IS, JP, NL, NO, PL, SE, ZA, CERN, IAEA)

- Participation in SCOAP³ driven by libraries through several consortia and institutes (AU, ES, IT, US)
- Participation in SCOAP³ via intergovernmental organization JINR (AM, AZ, BY, CU, KP, GE, KZ, MD, MN, UA, UZ, VN)
- Participation orchestrated by funding agencies together with libraries
- (AT, CN, DE, FR, GR, KR, MX, PT, SK, TR, TW, UK)
- Other countries with at least one SCOAP³ author
- Seat of intergovernmental organization (CERN, IAEA, JINR)


Country membership fees scale with HEP publications

Share of 2014-2015 authorship of SCOAP³ and APS HEP articles

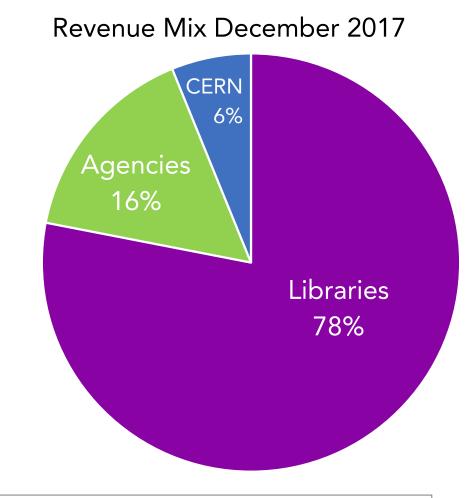
93% of SCOAP³ articles have 1-10 authors

Articles published in SCOAP³ journals 2014-2015 by number of authors

SCOAP³ has supported 17,500 articles since 2014

Publis	her	Journal		Articles 2014 – 2016	Articles 2017 (estimate)
ELSEVIER		Nuclear Physics B	Flip	1,008	295
		Physics Letters B	Flip	2,654	935
0 Hindawi		Advances in High Energy Physics	OA	512	140
Publishing	8	Chinese Physics C	% Flip	91	65
		Journal of Cosmol. & Astroparticle Phys.	% Flip	654	_
	Ф DPG	New Journal of Physics	OA	25	-
		Acta Physica Polonica B	% Flip	56	15
OXFORD UNIVERSITY PRESS	<u>JPŠ</u>	Progress of Theoretical & Experim. Phys.	OA	255	85
🖄 Springer		European Physical Journal C	Flip	1,830	860
		Journal of High Energy Physics	Flip	6,283	1960

Articles funded during Phase 1: 13,368 4,355


Total cost of SCOAP³ Phase 1 (2014-2016): 13.8 M€

Average SCOAP³ investment per article (1′032 €)

7/10 journals and 70% of articles published or co-published by learned societies

Sustainable revenue mix established

Reminder: for some countries, library re-directions fall short of the national fee (high-research output) and some funding agencies provide additional support.

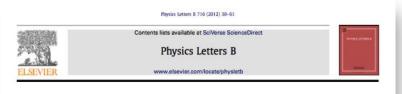
SCOAP³ Forum 2017

SCOAP³ continues to deliver cost efficiency

			2014-2016		2017-2019*	
Publis	sher	Journal	Articles	Investment	Articles	Investment
ELSEVIER		Nuclear Physics B	1,008		4,200	6,950,000\$
		Physics Letters B	2,654	6,620,000\$		
💿 Hir	ndawi	Advances in High Energy Physics	512	135,000\$	650	315,000\$
Publishing		Chinese Physics C	91		170	150,000£
	-	Journal of Cosmol. & Astrop. Ph.	654	780,000£	-	
	Φ dpg	New Journal of Physics	25	•	_	
	NIAN UNIVERSITY SW	Acta Physica Polonica B	56	28,000\$	120	52,500€
OXFORD UNIVERSITY PRESS	<u>JPŠ</u>	Progress of Theoret. & Exper. Ph.	255	205,000£	460	320,000£
🖉 Springer 🕷		European Physical Journal C	1,830	6 765 000f	9,800	7,500,000€
		Journal of High Energy Physics	6,283	0,703,000€		
2 Springe	r 😻	, ,		6,765,000€	9,800	7,500,000€

Total

Average per article


* Estimated number of articles and maximum contract values for 2017-2019v

SCOAP³ Impact An analysis of article downloads (Thanks to partners at arXiv, Elsevier, SpringerNature and Jacopo Notarstefano, CERN)

SCOAP³ Forum 07 December 2017

97% of yearly HEP articles available as preprint on arXiv

(Since 1992: in total 60% of all articles ever published in all leading journals)

Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC *

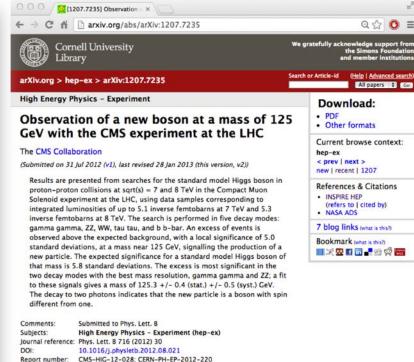
CMS Collaboration*

CERN, Switzenland

This paper is dedicated to the memory of our colleagues who worked on CMS but have since passed away. In recognition of their many contributions to the achievement of this observation.

ARTICLE INFO	ABSTRACT
Article history:	Results are presented from searches for the standard model Higgs boson in proton-proton collisions
Received 31 July 2012	at $\sqrt{s} = 7$ and 8 TeV in the Compact Muon Solenoid experiment at the LHC, using data samples
Received 10 revised form 9 August 2012	corresponding to integrated luminosities of up to 5.1 fb ⁻¹ at 7 TeV and 5.3 fb ⁻¹ at 8 TeV. The search
Accepted 11 August 2012	is performed in five decay modes: $\gamma \gamma$, ZZ, W^{WW} , $\tau^+ \tau^-$, and bh. An excess of events is observed above
Accepted 11 August 2012	the expected background, with a local significance of 5.0 standard deviations, at a mass near 125 GeV,
Editor: WD. Schlatter	signalling the production of a new particle. The exercted significance for a standard model Higgs boson
Keywords:	of that mass is 5.8 standard deviations. The excess is most significant in the two decay modes with the
CMS	best mass resolution, $\gamma\gamma$ and ZZ; a fit to these signals gives a mass of 125.3 ±0.4(stat.) ±0.5(syst.) GeV.
Physics	The decay to two photons indicates that the new particle is a boson with spin different from one.
Higgs	© 2012 CERN. Published by Elsevier B.V. All rights reserved.

1. Introduction


The standard model (SM) of elementary particles provides a remarkably accurate description of results from many accelerator and non-accelerator based experiments. The SM comprises quarks and leptons as the building blocks of matter, and describes their interations intrough the exchange of force carries: the photon for electromagnetic interactions, the W and Z bosons for weak interactions, and the gluons for strong interactions. The electromagnetic and weak interactions are unified in the electroweak theory. Although the predictions of the SM have been extensively confirmed, the question of how the W and Z gauge bosons acquire mass whilst the photon remains massless is still open.

Nearly fifty years ago it was proposed [1–6] that spontaneous symmetry breaking in gauge theories could be achieved through the introduction of a scalar field. Applying this mechanism to the electroweak theory [7–9] through a complex scalar doublet field leads to the generation of the W and Z masses, and to the prediction of the existence of the SM Higgs boson [H]. The scalar field also gives mass to the fundamental fermions through the 'Vidawa interaction. The mass $m_{\rm H}$ of the SM Higgs boson is not predicted by theory. However, general considerations [10–13] suggest that

0370-2693/ © 2012 CERN, Published by Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.physletb.2012.08.021 $m_{\rm H}$ should be smaller than ~ 1 TeV, while precision electroweak measurements imply that $m_{\rm H} < 152$ GeV at 95% confidence level (CI) [14]. Over the past twenty years, direct searches for the Higgs boson have been carried out at the LFP collider, leading to a lower bound of $m_{\rm H} > 114.4$ GeV at 95% CL [15] and dart the Tevatron proton-antiproton collider, excluding the mass range 162–166 GeV at 95% CL [16] and detecting an excess of events, recently reported in [17–19], in the range 120–135 GeV.

The discovery or exclusion of the SM Higgs boson is one of the primary scientific goals of the Large Hadron Collider (1HC) [20]. Previous direct searches at the LHC were based on data From proton-proton collisions corresponding to an integrated luminosity of 5 h⁻¹ collected at a tentre-of-mass energy $\sqrt{s} = 7$ TeV. The CMS experiment excluded at 95% CL a range of masses from 127 to 600 GeV [21]. The ALMS experiment excluded at 95% CL thranges 111.4-1166, 119.4-1221 and 129.2-541 GeV [22]. Within the remaining allowed mass region, an excess of events near 125 GeV was reported by both experiments. In 2012 the proton–proton centre-of-mass energy was increased to 8 TeV and by the end of June an additional integrated luminosity of more than 5 fb⁻¹ ha been recorded by each of these experiments, thereby enhancing significantly the sensitivity of the search for the Hiers boson.

This Letter reports the results of a search for the SM Higgs boson using samples collected by the CMS experiment, comprising data recorded at $\sqrt{s} = 7$ and 8 TeV. The search is performed in

Cite as: arXiv:1207.7235 [hep-ex] (or arXiv:1207.7235v2 [hep-ex] for this version)

Submission history

From: Cms Collaboration [view email] [v1] Tue, 31 Jul 2012 13:27:18 GMT (2076kb,D) [v2] Mon, 28 Jan 2013 10:46:38 GMT (1508kb,D)

Which authors of this paper are endorsers? | Disable MathJax (What is MathJax?)

Link back to: arXiv, form interface, contact.

^{* ©} CERN for the benefit of the CMS Collaboration.

^{*} E-mail address: cms-publication-committee-chair@cern.ch

What is the interplay of journals and preprints in High-Energy Physics after 25 years?

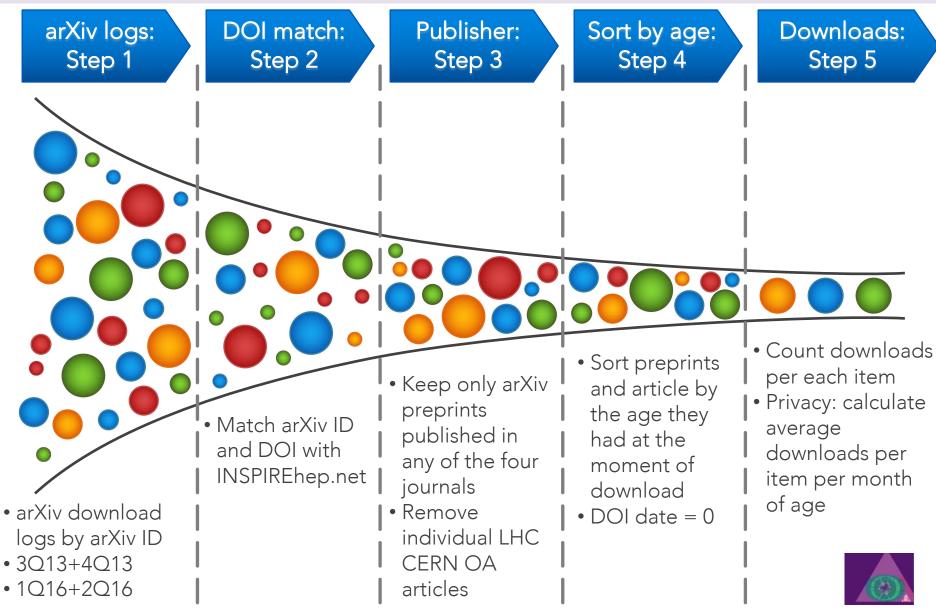
What is the interplay of Green (arXiv) Open Access and SCOAP³?

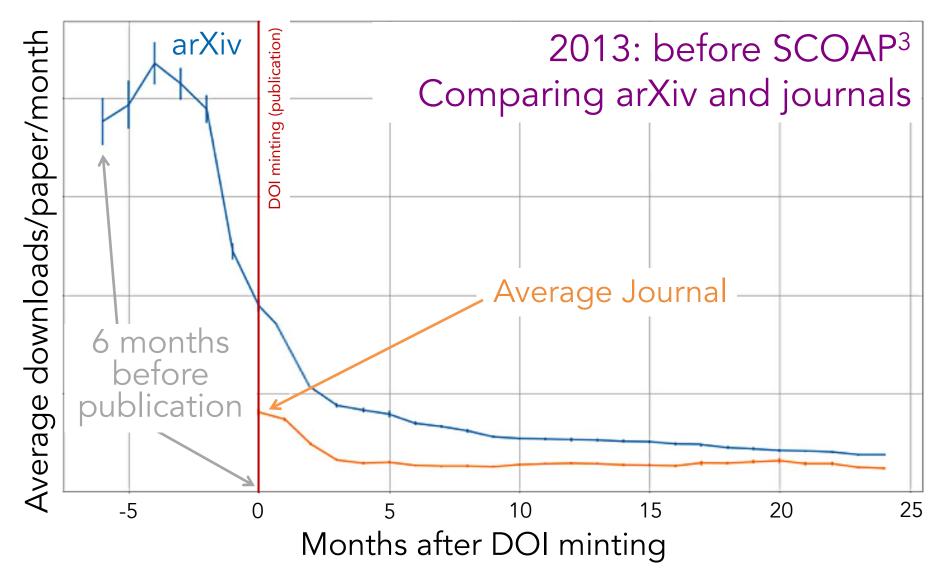
Are SCOAP³ Gold Open Access articles downloaded (more) ?

Compare article-level download for 4 key HEP journals with downloads of corresponding preprint on arXiv

Never done before

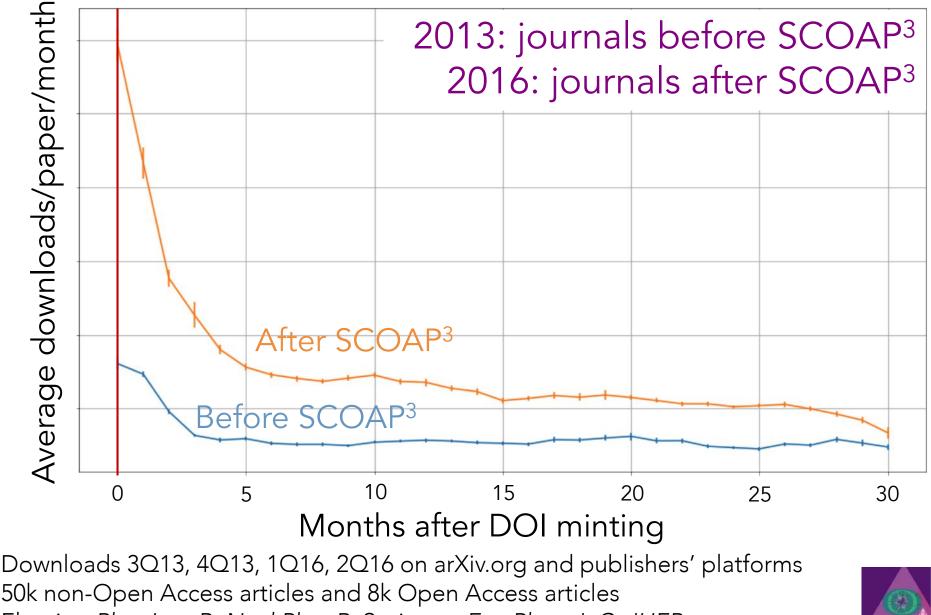
Thanks to arXiv, Elsevier, SpringerNature for sharing anonymized log files on daily article-level downloads



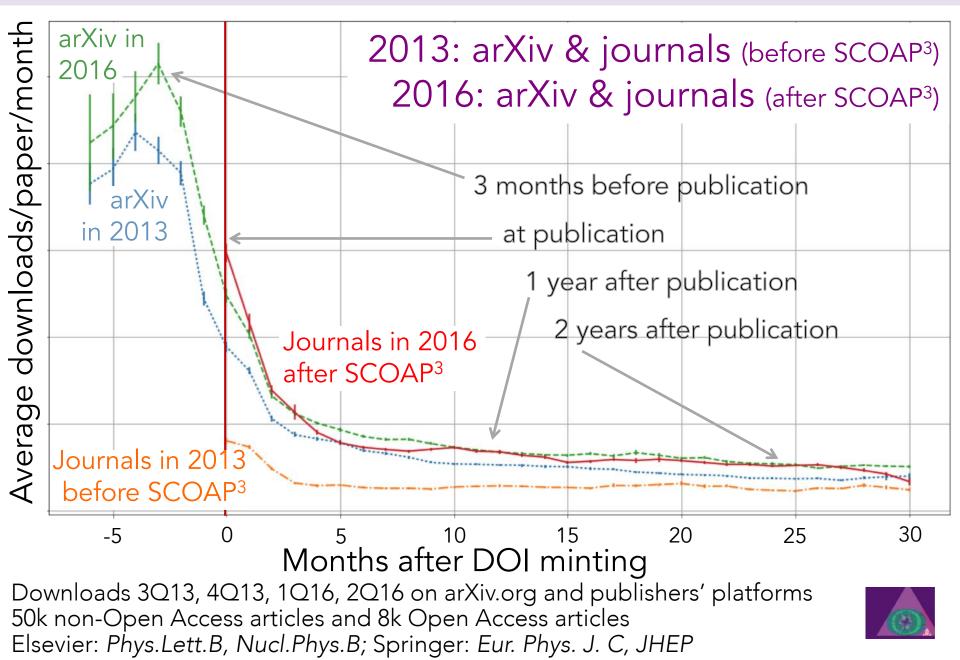


SCOAP³ Forum 2017

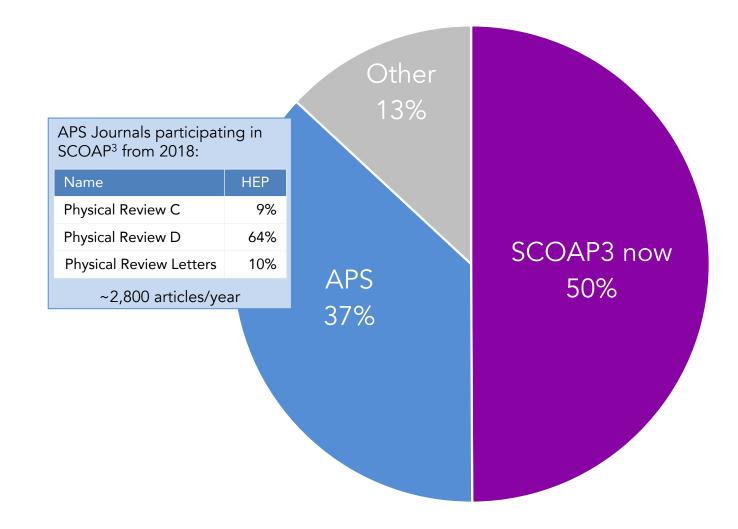
arXiv, Elsevier and SpringerNature shared anonymized download counts per item per day


Do HEP researchers read preprints or journals?

Downloads 3Q13, 4Q13 on arXiv.org and publishers' platforms ~50k articles in Elsevier Phys.Lett.B, Nucl.Phys.B & Springer Eur. Phys. J. C, JHEP

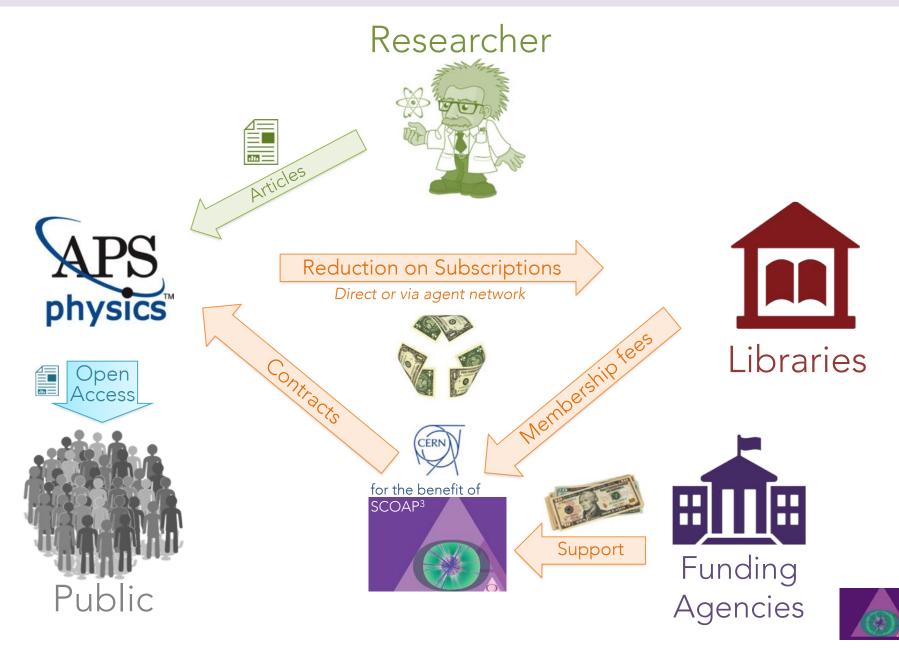

What happens when journals join SCOAP³?

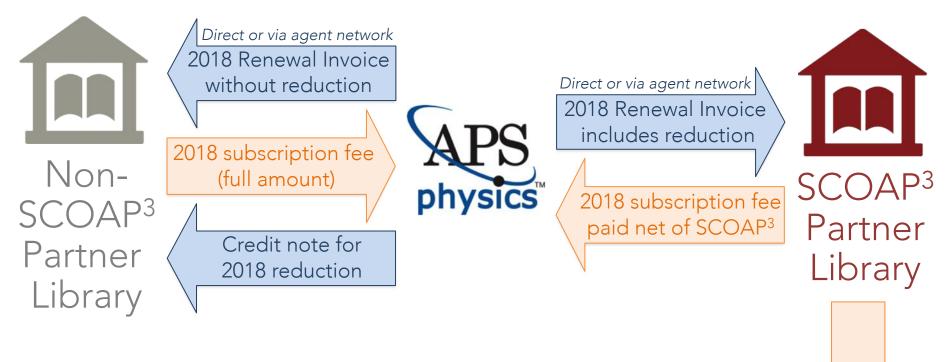
Elsevier: Phys.Lett.B, Nucl.Phys.B; Springer: Eur. Phys. J. C, JHEP


Downloads of preprints AND journals increase

APS to join SCOAP³ An outlook to the years ahead

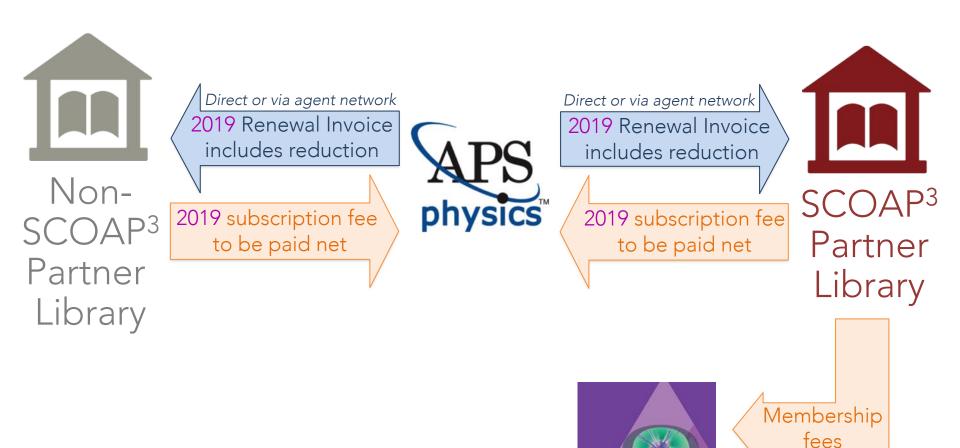
SCOAP³ Forum 07 December 2017


SCOAP³ will cover 87% of HEP journal literature


This analysis includes HEP articles published 2014 and 2015 in the listed journals. A HEP article is defined as an article submitted to arXiv in one of the HEP categories: HEP-EX, HEP-LAT, HEP-PH, HEP-TH. For simplification, journals with less than 25 HEP articles/year were excluded.

SCOAP³ business model: reminder

2018 Reduction for all APS subscribers



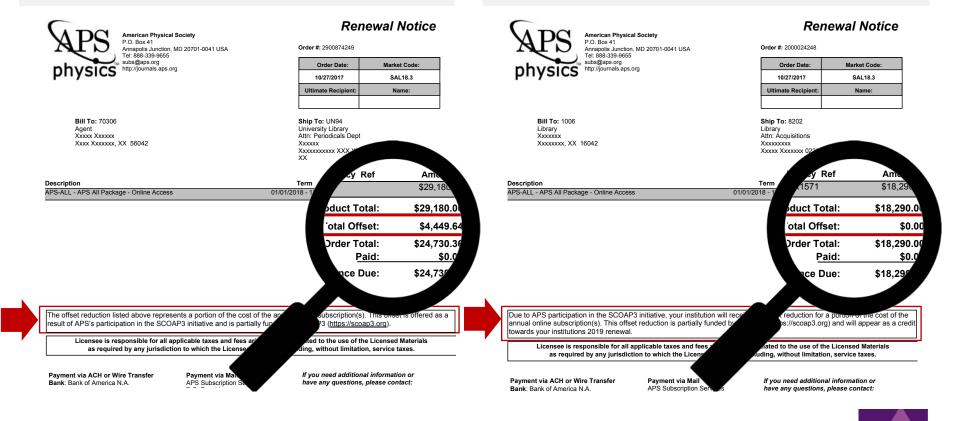
Membership fees

2019 Reduction for all APS subscribers

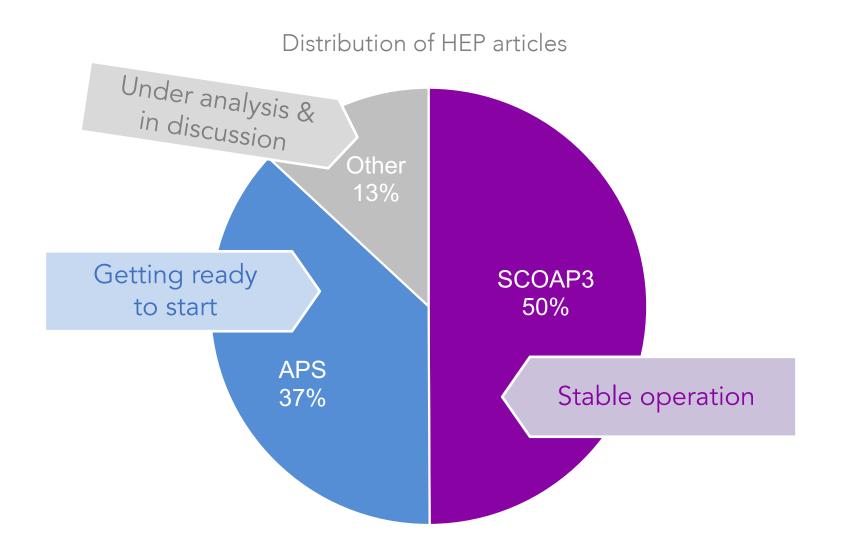
Reduction on subscriptions APS 2018

APS list		APS-ALL	PR-ALL	PRC	PRD	PRL
prices 2018	Tier 1	\$13,075	\$11,540	\$895	\$3,575	\$2,510
	Tier 2	\$18,290	\$16,065	\$1,265	\$4,995	\$3,490
	Tier 3	\$29,180	\$25,180	\$2,015	\$7,885	\$5,490
	Tier 4	\$38,120	\$33,160	\$2,585	\$10,335	\$7,120
	Tier 5	\$44,195	\$38,155	\$2,995	\$11,925	\$8,170
Reduction (HEP %)		15.25%	19%	9%	64%	10%
SCOAP ³		APS-ALL	PR-ALL	PRC	PRD	PRL
related	Tier 1	\$1,994	\$2,193	\$81	\$2,288	\$251
reduction	Tier 2	\$2,789	\$3,052	\$114	\$3,197	\$349
	Tier 3	\$4,450	\$4,784	\$181	\$5,046	\$549
	Tier 4	\$5,813	\$6,300	\$233	\$6,614	\$712
	Tier 5	\$6,740	\$7,249	\$270	\$7,632	\$817

- No guesswork: transparent and clear reductions for each journal, package and subscriber tier
- Reduction % commensurate with HEP share of journal


What to expect on your APS invoice

SCOAP³ Partners


- See reduction directly on the 2018 renewal invoice
- Payable amount net of SCOAP³ reduction (15.25% for APS-ALL)

Non-SCOAP³ Partners

- 2018 renewal payable in full
- SCOAP³ reduction as credit note
- Credit note can be used against 2019 renewal invoice

SCOAP³: Next steps

This analysis includes HEP articles published 2014 and 2015 in the listed journals. A HEP article is defined as an article submitted to arXiv in one of the HEP categories: HEP-EX, HEP-LAT, HEP-PH, HEP-TH. For simplification, journals with less than 25 HEP articles/year were excluded.

SCOAP³ Forum 2017

Questions & Answers

Thank you for attending!

You can find further information and a recording of this webinar on our homepage: https://scoap3.org

